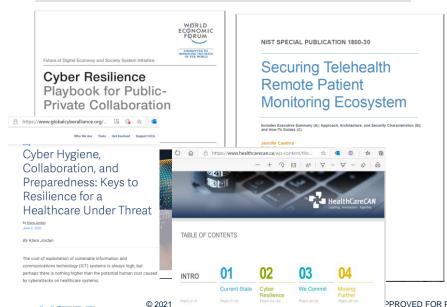
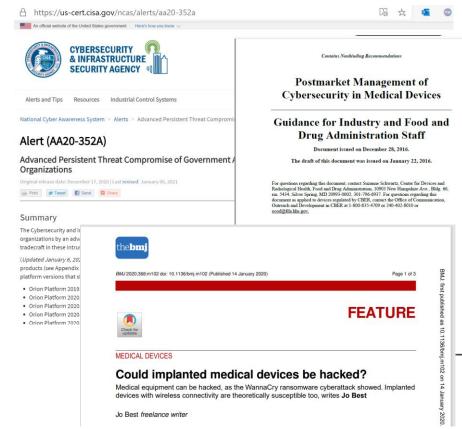
Cyber Resiliency Overview

January 11, 2020

Topics


- Why talk about cyber resiliency?
- What is cyber resiliency?
- How does the concept of cyber resiliency translate into engineering decisions?
- How does cyber resiliency relate to cyber security?
- A notional example
- Resources



Why Cyber Resiliency? Cyber Dependence and Cyber Threats

Increasing Recognition of the Need for Resilience in Cyberspace

Resilience against cyber attacks needed at multiple levels – ecosystem, organization, healthcare functions

Recognition that systems must be expected to include compromised or readily hacked components

Cyber Resiliency – "Why" Drives What, How, When, and Where

WHY

The bad guys
WILL get in and may
not be detected in
time

Critical functions

and operations fail when attacked

WHAT

Keep service delivery going

Resilience of critical cyber resources, functions, business processes or organization in the face of cyber threats

WHEN & WHERE

Apply resiliency throughout the system lifecycle

(requirements, acquisition, training, operations)
and across the enterprise

(architecture, policy, operational procedures)

HOW

Transformation of thought

Architect

Augment traditional approaches

Adopt missionoriented threat-based system engineering processes

Define policies & practices

Design, build, integrate – engineer for cyber resiliency

What Is Cyber Resiliency? As Defined in NIST SP 800-160 Vol. 2

Informal Definition

The ability to deliver a service or perform a function, possibly at a **reduced but effective level,** in spite of ongoing cyber attacks

Formal Definition

The ability to anticipate,
withstand, recover from, and
adapt to adverse conditions,
stresses, attacks, or
compromises on cyber
resources

Cyber resiliency is not just a new name for cyber security
Nor is it a new name for COOP, conventional system resilience, or
organizational resilience

The underlying assumption is that compromises will happen — and may go undetected for extended periods — but that if the right technologies, processes, and controls are in place, needs can still be met

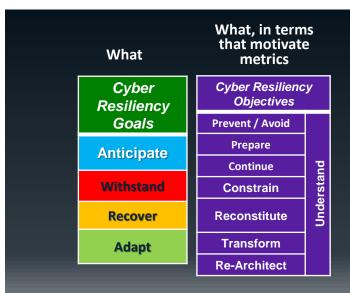
Cyber resiliency builds on and integrates existing disciplines ... and includes additional capabilities

Cyber Resiliency Engineering Builds on Related Disciplines

Disciplines	Key Concepts	Cyber Resiliency Engineering Insights
Security, Information Assurance	Provide confidentiality, integrity, availability, accountability for information and services, despite threats (adversarial, accidental, structural, environmental)	Focus on mission assurance and risks to missions Advanced adversaries can emulate non-adversarial threats
Cybersecurity	Provide security despite adversarial threats via cyberspace	Advanced adversaries can establish and maintain a covert presence – boundary defenses and intrusion detection do not suffice
Resilience Engineering, COOP, Survivability	Provide system or operational resilience in the face of accidents and disruptions	Adversary can interfere with – or take advantage of – recovery efforts

Cyber resiliency is one quality property among many that systems engineers must consider. Quality properties typically overlap and interact.

The systems engineering challenge is to understand and make trade-offs among the different properties, and the different ways to achieve those properties, in a cost-effective, risk-managed way.


How Does the Concept of Cyber Resiliency Translate into Engineering Decisions? Understand Overarching Goals

		Term	Context	Definition
What		Information System	Information systems	The ability of an information system to continue to: (i) operate under adverse conditions or stress, even if in a degraded or debilitated state, while maintaining essential
Cyber		Resilience		operational capabilities; and (ii) recover to an effective operational posture in a time frame consistent with mission needs. (NIST, 2013)
Resiliency Goals		Operational Resilience	Organizations	The organization's ability to adapt to risk that affects its core operational capacities. Operational resilience is an emergent property of effective operational risk
Anticipate	"Be prepared"			management, supported and enabled by activities such as security and business continuity. A subset of enterprise resilience, operational resilience focuses on the organization's ability to manage operational risk, whereas enterprise resilience
Withstand	"Fight through"			encompasses additional areas of risk such as business risk and credit risk. (Caralli, Allen, & White, 2010) [CERT RMM™]
Recover	"Bounce back"	Resilience	Engineered systems	Resilience is the ability to prepare and plan for, absorb or mitigate, recover from, or more successfully adapt to actual or potential adverse events. (INCOSE, 2015)
Adapt	"Adapt to a changing world"	Resilience	Engineered systems	Resilience is the ability to provide required capability in the face of adversity. The means of achieving resilience include avoiding, withstanding, recovering from, and evolving and adapting to adversity. (INCOSE Resilient Systems Working Group, 2015)
_		Resilience	Systems or networks	The ability of a system or network to resist failure or to recover quickly from any disruption, usually with minimal recognizable effect (ISACA, 2014)
		Resilience	Communities, Infrastructure sectors, the Nation	The ability to adapt to changing conditions and withstand and rapidly recover from disruption due to emergencies (Office of the President, 2011)
		Resilience	Communities, Infrastructure sectors, the Nation	The ability to prepare for and adapt to changing conditions and to withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover from deliberate attacks, accidents, or naturally occurring threats or incidents. (Office of the President, 2013)

Cyber resiliency goals are based on a wide range of resilience-related definitions ... this table is a sample, highlighting terms for goals

How Does the Concept of Cyber Resiliency Translate into Engineering Decisions? Define Objectives as a Basis for Assessment

How quickly, how long, how completely, how effectively, with how much confidence ...

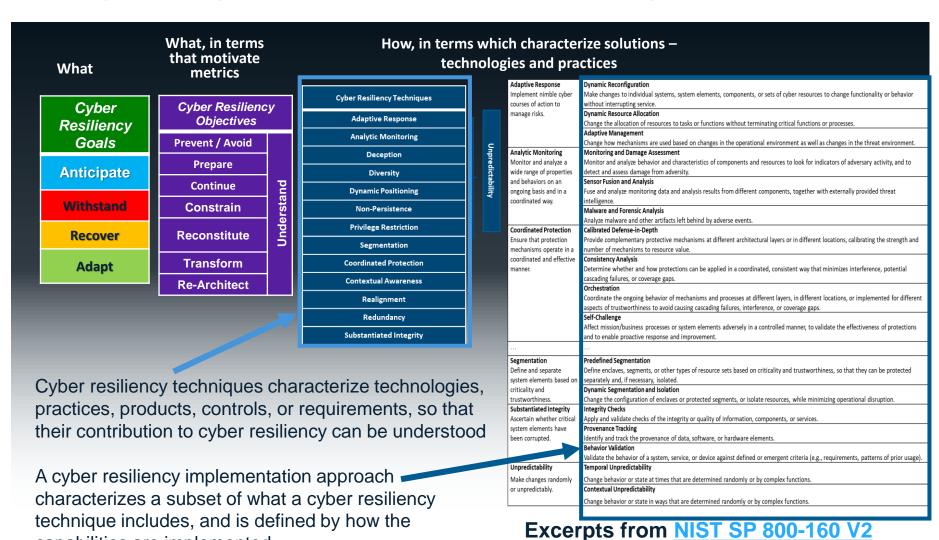
Prevent or Avoid: Preclude successful execution of an attack or the realization of adverse conditions

Prepare: Maintain a set of realistic cyber courses of action that address predicted or anticipated adversity

Continue: Maximize the duration and viability of essential mission or business functions during adversity

Constrain: Limit damage from adversity

Reconstitute: Restore as much mission or business functionality as possible subsequent to adversity

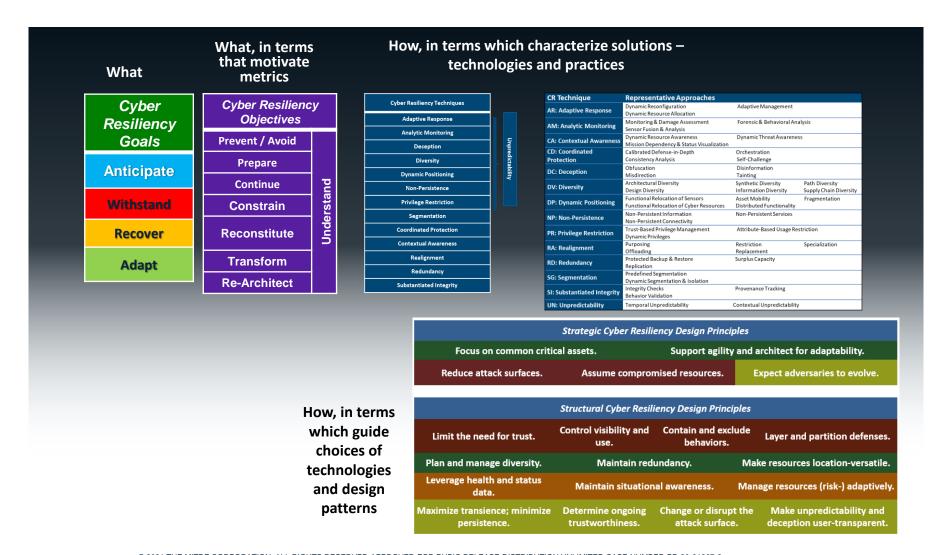

Understand: Maintain useful representations of mission and business dependencies and the status of resources with respect to possible adversity

Transform: Modify mission or business functions and supporting processes to handle adversity and address environmental changes more effectively

Re-Architect: Modify architectures to handle adversity and address environmental changes more effectively

How Does the Concept of Cyber Resiliency Translate into Engineering Decisions? Identify Technologies and Practices

capabilities are implemented.


Identify Technologies and Practices Using Capability Categories and Approaches to Implementing Capabilities

Cyber Resiliency Technique	Representative Im	plementation Approac	ches
Adaptive Response	Dynamic Reconfiguration Dynamic Resource Allocation	Adaptive Management	
Analytic Monitoring	Monitoring & Damage Assessment Sensor Fusion & Analysis	Forensic & Behavioral Anal	ysis
Contextual Awareness	Dynamic Resource Awareness Mission Dependency & Status Visualization	Dynamic Threat Awareness	5
Coordinated Protection	Calibrated Defense-in-Depth Consistency Analysis	Orchestration Self-Challenge	
Deception	Obfuscation Misdirection	Disinformation Tainting	
Diversity	Architectural Diversity Design Diversity	Synthetic Diversity Information Diversity	Path Diversity Supply Chain Diversity
Dynamic Positioning	Functional Relocation of Sensors Functional Relocation of Cyber Resources	Asset Mobility Distributed Functionality	Fragmentation
Non-Persistence	Non-Persistent Information Non-Persistent Connectivity	Non-Persistent Services	
Privilege Restriction	Trust-Based Privilege Management Dynamic Privileges	Attribute-Based Usage Res	triction
Realignment	Purposing Offloading	Restriction Replacement	Specialization
Redundancy	Protected Backup & Restore Replication	Surplus Capacity	
Segmentation	Predefined Segmentation Dynamic Segmentation & Isolation		
Substantiated Integrity	Integrity Checks Behavior Validation	Provenance Tracking	
Unpredictability	Temporal Unpredictability	Contextual Unpredictability	

For more information, see NIST SP 800-160 Vol. 2

How Does the Concept of Cyber Resiliency Translate into Engineering Decisions? Articulate Guiding Principles

How Does the Concept of Cyber Resiliency Translate into Engineering Decisions? Put the Pieces Together ...

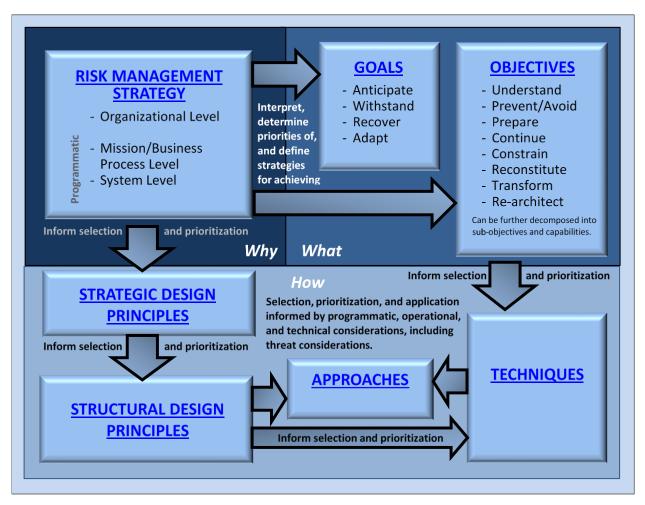
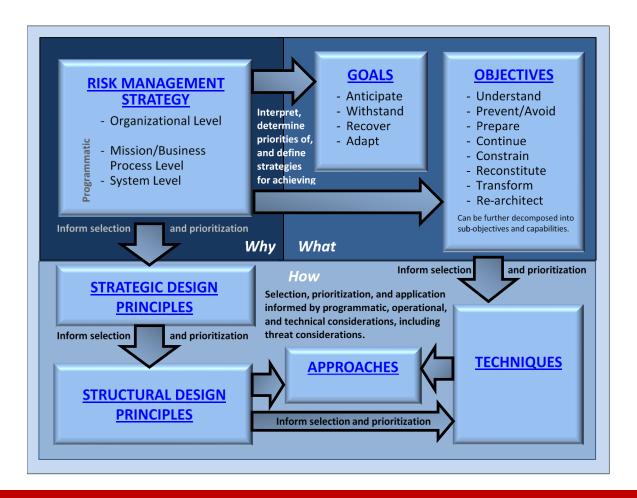



Figure from NIST SP 800-160 Volume 2 – Developing Cyber Resilient Systems: *A Systems Security Engineering Approach*

... Using Good Systems Engineering Judgment

Apply selectively – based on stakeholder priorities, risk management strategy, operational considerations, legacy investments, etc.

What Is the Relationship Between Cybersecurity and Cyber Resiliency?

Limitations with Conventional Cyber Security Practices

Traditional Cyber Security Practices	Limitations	
Establish an effective security perimeter	No perimeter is 100% effective at keeping adversaries out	
Use up-to-date A/V s/w to detect malware	A/V is ineffective against new zero-day attacks	
Encrypt data while at rest and in transit	Encrypted traffic is a great place for adversary activity to hide	
Monitor and audit all user activity	Audit logs are rarely checked due to lack of time and resources and moreover they are often focused on individual components and do not provide a big picture view of adversary activities	
Develop and maintain backup plans, contingency plans, IA policies, accreditations, etc.	Redundant servers and data are designed to deal with natural disasters; they are ineffective against the APT who will apply the same attacks against backups	

Threat assumptions, adversary presence, compromise focus differ for resiliency

	Conventional Cyber Security	Cyber Resiliency∄
Threat Assumptions with respect to Adversary⊠	Capabilities: Limited Intent: Self aggrandizement, personal benefits Targeting: Targets of opportunity Timeline: Episodic Stealthy: No®	Capabilities: Sophisticated, well resourced Intent: Establish & maintain ability to undermine mission Targeting: High value targets, very persistent Timeline: Long term campaigns Stealthy: Very®
Adversary Presence®	Assumes can be kept out or can quickly be detected and removed?	Assumes adversary has established a foothold?
Focus of Type of Compromises	Limited duration events, natural disasters ²	Ongoing attacks, long term adversary presence, organization must "fight thru"
Recovery∄	Adversary is not present to impede recovery	Recovery must be done despite presence of adversary®
Goals	Protect, Detect, React⊡	Anticipate, Withstand, Recover, Evolve®

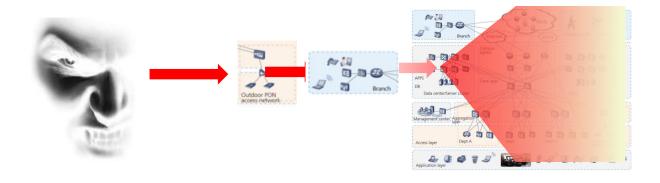
Cyber resiliency measures can complement or sometimes replace conventional cyber security measures

What Is the Relationship Between Cybersecurity and Cyber Resiliency? Transition Along a Continuum

Conventional Cybersecurity

Implement conventional cybersecurity / resilience capabilities in a novel or enhanced ways (e.g., use AI to enhance intrusion detection, employ firewalls or microsegmentation to provide internal enclaves)

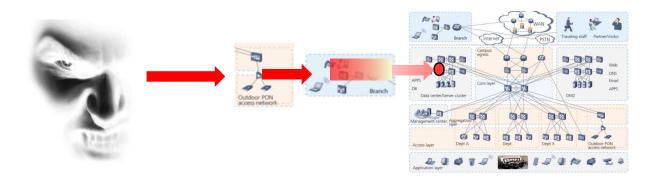
Draw from other disciplines that deal with active threats (e.g., sports and military) (e.g., provide misleading information and use deception environments to confuse adversaries, employ moving target defenses, change behavior or states at random times)


Apply minor tweaks to conventional cybersecurity and resilience (e.g., COOP) (e.g., ensure backups are protected, rather than being a back door)

Draw from other disciplines that deal with non-adversarial threats (e.g., safety and survivability) (e.g., use randomizing compilers, multiple OSs, alternate protocols to provide diversity; employ virtualization to support non-persistent services to flush out malware; employ voting on multiple systems to detect corrupted outputs)

Cyber Resiliency

Example Scenario


Attacker uses 0-day exploit to penetrate systems at local facility
Malware spreads within local facility; user accounts compromised
Malware takes advantage of homogeneous software environment,
compromised accounts to spread to corporate network
Static host environment enables attacker to maintain foothold

Traditional defenses (boundary protection and patching) are insufficient

Example Scenario with Cyber Resiliency Applied

Resiliency enables the enterprise to complete missions, provide essential services, or perform essential functions despite successful attacks.

- Segmentation: distinct internal enclaves
- Diversity: run IE, Chrome, Firefox, etc.
- Non-Persistence: reimage software periodically
- Substantiated Integrity: quality / consistency checks → Detect corruption, limit its effects
- Deception: detonation chambers, honeynets
- Unpredictability: ASLR, randomizing compiler, ...

- → Contain adversary's advance
- → Negate adversaries assumptions
- → Expunge malware (foothold lost)
- → Detect malware, divert adversary
- → Delays attack progression

Knowledge of specific attack not required Patching of vulnerabilities not the focus Detection of adversaries is helpful but not required AND It's not just about technology – includes defender TTPs

Cyber Resiliency Resources (1 of 3)

NIST SP 800-160 Volume 2, Final— Developing Cyber Resilient Systems: *A Systems Security Engineering Approach*

- Includes definitions of the cyber resiliency goals, objectives, techniques, implementation approaches, design principles ... and describes how they relate and how they are used
- Identifies cyber resiliency controls in NIST SP 800-53R5
- Provides systems engineering guidance for applying cyber resiliency
- Provides notional worked examples

Developing Cyber Resilient Systems:

A Systems Security Engineering Approach

RON ROSS
VICTORIA PILLITTERI
RICHARD GRAUBART
DEBORAH BODEAU
ROSALIE MCQUAID

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-160v2

NIST Special Publication 800-160

Cyber Resiliency Resources (2 of 3)

Start with the most recent resources

Cyber Resiliency Metrics, Measures of Effectiveness, and Scoring (2018)

https://www.mitre.org/publications/technicalpapers/cyber-resiliency-metrics-measures-ofeffectiveness-and-scoring

Cyber Resiliency Metrics Catalog (2018)

https://www.mitre.org/publications/technicalpapers/cyber-resiliency-metrics-catalog

Cyber Resiliency Metrics and Scoring in Practice: Use Case Methodology (2018)

https://www.mitre.org/publications/technicalpapers/cyber-resiliency-metrics-and-scoring-inpractice-use-case-methodology

Cyber Resiliency Design Principles (2017)

https://www.mitre.org/sites/default/files/publications/PR%2017-

0103%20Cyber%20Resiliency%20Design%20Pr inciples%20MTR17001.pdf

Augment with resources which answer specific questions

Cyber Resiliency Metrics: Key Observations (2016)

https://www.mitre.org/sites/default/files/public ations/pr-16-0779-cyber-resilience-metricskey-observations.pdf

The Risk Management Framework and Cyber Resiliency (2016)

https://www.mitre.org/sites/default/files/public ations/pr-16-0776-cyber-resiliency-and-therisk-management-framework.pdf

Resiliency Mitigations in Virtualized and Cloud Environments (2016)

https://www.mitre.org/sites/default/files/public ations/pr-16-3043-virtual-machine-attacks-andcyber-resiliency.pdf

A Measurable Definition of Resiliency Using "Mission Risk" as a Metric (2014)

https://www.mitre.org/sites/default/files/public ations/resiliency-mission-risk-14-0500.pdf

Cyber Resiliency Resources (3 of 3)

Get a sense of the area

Cyber Resiliency FAQ (2017)

https://www.mitre.org/sites/default/files/PR_17-1434.pdf

Cyber Resiliency Resource List (2016)

http://www2.mitre.org/public/sr/C yber-Resiliency-Resources-16-1467.pdf

Industry Perspectives (2015)

http://www2.mitre.org/public/industry-perspective/

Situate in terms of cyber preparedness

Short summary (2017)

https://www.mitre.org/sites/defaul t/files/publications/15-0797-cyberprep-2-motivating-organizationalcyber-strategies.pdf

Extended version (2017)

https://www.mitre.org/sites/defaul t/files/publications/16-0939motivating-organizational-cyberstrategies.pdf

Additional References — Cited on Slide 2 (Representative Examples of Publications Motivating Consideration of Cyber Resiliency)

World Economic Forum, "Cyber Resilience Playbook for Public-Private Collaboration," 9 August 2018. [http://www3.weforum.org/docs/WEF_Cyber_Resilience_Playbook.pdf.

K. Jordan, "Cyber Hygiene, Collaboration, and Preparedness: Keys to Resilience for a Healthcare Under Threat," Global Cyber Alliance, 3 June 2020. https://www.globalcyberalliance.org/cyber-hygiene-collaboration-and-preparedness-keys-to-resilience-for-a-healthcare-under-threat/.

NIST, "NIST SP 1800-30 (DRAFT): Securing Telehealth Remote Patient Monitoring Ecosystem," 16 November 2020. https://www.nccoe.nist.gov/sites/default/files/library/sp1800/rpm-nist-sp1800-30-draft.pdf.

"Cybersafe Healthcare: Options for strengthening cybersecurity in Canada's healthcare sector," 27 March 2018. https://www.healthcarecan.ca/wp-content/themes/camyno/assets/document/Cyber%20Security/Options%20Brief%20Summit%20Report.pdf.

CISA, "Alert (AA20-352A): Advanced Persistent Threat Compromise of Government Agencies, Critical Infrastructure, and Private Sector Organizations," Cybersecurity and Infrastructure Security Agency, 17 December 2020. https://us-cert.cisa.gov/ncas/alerts/aa20-352a.

FDA, "Postmarket Management of Cybersecurity in Medical Devices," 28 December 2016. https://www.fda.gov/media/95862/download.

J. Best, "Could implanted medical devices be hacked?," The British Medical Journal, 14 January 2020. https://www.bmj.com/content/bmj/368/bmj.m102.full.pdf.

